Ecological Risks of Zinc Oxide Nanoparticles for Early Life Stages of Obscure Puffer (Takifugu obscurus)

Author:

Tang Shengkai1,Wang Jun2,Zhu Xuexia2,Shen Dongdong1

Affiliation:

1. Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China

2. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Abstract

Nanoparticles of zinc oxide (ZnO NPs) are extensively used in various applications, and their widespread use leads to their environmental presence, particularly in wastewater treatment plant effluents, rivers, and soil. This study focuses on the obscure puffer, Takifugu obscurus, an economically important fish in China, aiming to assess the toxic effects of ZnO NPs on its early life stages, emphasizing the need for understanding the ecological implications of ZnO NP exposure in aquatic environments. Exposure during the hatching stage resulted in a significant decrease in hatching rates, with embryos displaying surface coating at higher ZnO NP concentrations. Newly hatched larvae experienced deformities, and post-hatching exposure led to pronounced reductions in survival rates, particularly with higher ZnO NP concentrations. Two-month-old juveniles exposed to increasing ZnO NP concentrations exhibited a consistent decline in survival rates, emphasizing concentration-dependent adverse effects. Biochemical analyses revealed elevated malondialdehyde (MDA) levels and decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in various tissues, indicating oxidative stress. This study underscores the ecological risks of ZnO NP contamination in aquatic environments, emphasizing the need for careful consideration of nanoparticle exposure in aquatic ecosystems.

Funder

Jiangsu Provincial Unit Agricultural Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3