A New Graph-Based Deep Learning Model to Predict Flooding with Validation on a Case Study on the Humber River

Author:

Oliveira Santos Victor1ORCID,Costa Rocha Paulo Alexandre12ORCID,Scott John3ORCID,Thé Jesse Van Griensven13,Gharabaghi Bahram1ORCID

Affiliation:

1. School of Engineering, University of Guelph, 50 Stone Rd. E, Guelph, ON N1G 2W1, Canada

2. Mechanical Engineering Department, Technology Center, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil

3. Lakes Environmental, 170 Columbia St. W, Waterloo, ON N2L 3L3, Canada

Abstract

Floods are one of the most lethal natural disasters. It is crucial to forecast the timing and evolution of these events and create an advanced warning system to allow for the proper implementation of preventive measures. This work introduced a new graph-based forecasting model, namely, graph neural network sample and aggregate (GNN-SAGE), to estimate river flooding. It then validated the proposed model in the Humber River watershed in Ontario, Canada. Using past precipitation and stage data from reference and neighboring stations, the proposed GNN-SAGE model could estimate the river stage for flooding events up to 24 h ahead, improving its forecasting performance by an average of 18% compared with the persistence model and 9% compared with the graph-based model residual gated graph convolutional network (GNN-ResGated), which were used as baselines. Furthermore, GNN-SAGE generated smaller errors than those reported in the current literature. The Shapley additive explanations (SHAP) revealed that prior data from the reference station was the most significant factor for all prediction intervals, with seasonality and precipitation being more influential for longer-range forecasts. The findings positioned the proposed GNN-SAGE model as a cutting-edge solution for flood forecasting and a valuable resource for devising early flood-warning systems.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance

Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3