Random Forest Classification and Ionospheric Response to Solar Flares: Analysis and Validation

Author:

Arnaut Filip1,Kolarski Aleksandra1ORCID,Srećković Vladimir A.1ORCID

Affiliation:

1. Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract

The process of manually checking, validating, and excluding data in an ionospheric very-low-frequency (VLF) analysis during extreme events is a labor-intensive and time-consuming task. However, this task can be automated through the utilization of machine learning (ML) classification techniques. This research paper employed the Random Forest (RF) classification algorithm to automatically classify the impact of solar flares on ionospheric VLF data and erroneous data points, such as instrumentation errors and noisy data. The data used for analysis were collected during September and October 2011, encompassing solar flare classes ranging from C2.5 to X2.1. The F1-score values obtained from the test dataset displayed values of 0.848; meanwhile, a more detailed analysis revealed that, due to the imbalanced distribution of the target class, the per-class F1-score indicated higher values for the normal data point class (0.69–0.97) compared to those of the anomalous data point class (0.31 to 0.71). Instances of successful and inadequate categorization were analyzed and presented visually. This research investigated the potential application of ML techniques in the automated identification and classification of erroneous VLF amplitude data points; however, the findings of this research hold promise for the detection of short-term ionospheric responses to, e.g., gamma ray bursts (GRBs), or in the analysis of pre-earthquake ionospheric anomalies.

Funder

Institute of Physics Belgrade, University of Belgrade

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3