Improving Air Quality Data Reliability through Bi-Directional Univariate Imputation with the Random Forest Algorithm

Author:

Arnaut Filip1ORCID,Đurđević Vladimir2ORCID,Kolarski Aleksandra1ORCID,Srećković Vladimir A.1ORCID,Jevremović Sreten3

Affiliation:

1. Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia

2. Faculty of Physics, University of Belgrade, Cara Dušana 13, 11000 Belgrade, Serbia

3. Scientific Society “Isaac Newton”, Volgina 7, 11160 Belgrade, Serbia

Abstract

Forecasting the future levels of air pollution provides valuable information that holds importance for the general public, vulnerable populations, and policymakers. High-quality data are essential for precise and reliable forecasts and investigations of air pollution. Missing observations arise when the sensors utilized for assessing air quality parameters experience malfunctions, which result in erroneous measurements or gaps in the dataset and hinder the data quality. This research paper presents a novel approach for imputing missing values in air quality data in a univariate approach. The algorithm employs the random forest (RF) algorithm to impute missing observations in a bi-directional (forward and reverse in time) manner for air quality (particulate matter less than 2.5 μm (PM2.5)) data from the Republic of Serbia. The algorithm was evaluated against simple methods, such as the mean and median imputation methods, for missing observations over durations of 24, 48, and 72 h. The results indicate that our algorithm yielded comparable error rates to the median imputation method for all periods when imputing the PM2.5 data. Ultimately, the algorithm’s higher computational complexity proved itself as not justified considering the minimal error decrease it achieved compared with the simpler methods. However, for future improvement, additional research is needed, such as utilizing low-code machine learning libraries and time-series forecasting techniques.

Funder

project “UniBelgrade: Climate attribution SRB 23/24 (Mentoring programme for young researchers to adopt advanced knowledge in climate research and to effectively communicate their results)”

European Climate Foundation

Institute of Physics Belgrade, University of Belgrade

Ministry of Science, Technological Development and Innovations of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3