Modeling Equatorial to Mid‐Latitudinal Global Night Time Ionospheric Plasma Irregularities Using Machine Learning

Author:

Seba Ephrem Beshir12ORCID,Lapenta Giovanni2

Affiliation:

1. Space Science and Geospatial Institute (SSGI) Addis Ababa Ethiopia

2. Now at: KU Leuven, Department Wiskunde Centre for Mathematical Plasma‐Astrophysics Leuven Belgium

Abstract

AbstractThis study focuses on modeling the characteristics of nighttime topside Ionospheric Plasma Irregularities (PI) on a global scale. We utilize Random Forest (RF) and a one‐dimensional Convolutional Neural Network (1D‐CNN) model, incorporating data from the Swarm A, B, and C satellites, space weather data from the OMNIWeb data center, as well as zonal and meridional wind model data. Our objective is to simulate monthly global PI characteristics using a multilayer 1D‐CNN model trained on 12 space weather and ionospheric parameters. In addition, we investigate the most influential input parameters for predicting global nighttime PI characteristics. Our findings indicate that non‐equinox months exhibit the highest equatorial PI magnitude over the American‐African longitudinal sector, contrary to the expected higher Rayleigh‐Taylor instability growth rate during equinox months. Winter months display the most intense and widespread vertically and horizontally distributed equatorial PI patterns. We also observe double peaks across geomagnetic latitudes and longitudinally varying wavelike irregularity structures, particularly in May, August, and predominantly in September. Furthermore, north‐south hemispherical asymmetry in PI observed across different seasons. Through the RF parameter importance analysis method, we determine that temporal, geographical, and magnetic disturbance‐related factors play a crucial role in predicting global PI variabilities. These findings emphasize the significance of these variables in controlling the strongest PI characteristics observed in the Atlantic sector, which has garnered considerable attention in PI research. The employed 1D‐CNN model demonstrates exceptional predictive capabilities, exhibiting a strong correlation of 0.98 for global PI characteristics across all months and satellites.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3