Research on Dynamic Path Planning of Multi-AGVs Based on Reinforcement Learning

Author:

Bai Yunfei,Ding Xuefeng,Hu Dasha,Jiang Yuming

Abstract

Automatic guided vehicles have become an important part of transporting goods in dynamic environments, and how to design an efficient path planning method for multiple AGVs is a current research hotspot. Due to the complex road conditions in dynamic environments, there may be dynamic obstacles and situations in which only the target point is known but a complete map is lacking, which leads to poor path planning and long planning time for multiple automatic guided vehicles (AGVs). In this paper, a two-level path planning method (referred to as GA-KL, genetic KL method) for multi-AGVs is proposed by integrating the scheduling policy into global path planning and combining the global path planning algorithm and local path planning algorithm. First, for local path planning, we propose an improved Q-learning path optimization algorithm (K-L, Kohonen Q-learning algorithm) based on a Kohonen network, which can avoid dynamic obstacles and complete autonomous path finding using the autonomous learning function of the Q-learning algorithm. Then, we adopt the idea of combining global and local planning by combining the K-L algorithm with the improved genetic algorithm; in addition, we integrate the scheduling policy into global path planning, which can continuously adjust the scheduling policy of multi-AGVs according to changes in the dynamic environment. Finally, through simulation and field experiments, we verified that the K-L algorithm can accomplish autonomous path finding; compared with the traditional path planning algorithm, the algorithm achieved improves results in path length and convergence time with various maps; the convergence time of the algorithm was reduced by about 6.3%, on average, and the path length was reduced by about 4.6%, on average. The experiments also show that the GA-KL method has satisfactory global search capability and can effectively avoid dynamic obstacles. The final experiments also demonstrated that the GA-KL method reduced the total path completion time by an average of 12.6% and the total path length by an average of 8.4% in narrow working environments or highly congested situations, which considerably improved the efficiency of the multi-AGVs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3