3D JPS Path Optimization Algorithm and Dynamic-Obstacle Avoidance Design Based on Near-Ground Search Drone

Author:

Luo Yuan,Lu Jiakai,Zhang Yi,Qin Qiong,Liu Yanyu

Abstract

As various fields and industries have progressed, the use of drones has grown tremendously. The problem of path planning for drones flying at low altitude in urban as well as mountainous areas will be crucial for drones performing search-and-rescue missions. In this paper, we propose a convergent approach to ensure autonomous collision-free path planning for drones in the presence of both static obstacles and dynamic threats. Firstly, this paper extends the jump point search algorithm (JPS) in three dimensions for the drone to generate collision-free paths based on static environments. Next, a parent node transfer law is proposed and used to implement the JPS algorithm for any-angle path planning, which further shortens the planning path of the drones. Furthermore, the optimized paths are smoothed by seventh-order polynomial interpolation based on minimum snap to ensure the continuity at the path nodes. Finally, this paper improves the artificial potential field (APF) method by a virtual gravitational field and 3D Bresenham’s line algorithm to achieve the autonomous obstacle avoidance of drones in a dynamic-threat conflict environment. In this paper, the performance of this convergent approach is verified by simulation experiments. The simulation results show that the proposed approach can effectively solve the path planning and autonomous-obstacle-avoidance problems of drones in low-altitude flight missions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. A review: On path planning strategies for navigation of mobile robot

2. A UAV vision system for airborne surveillance;Kontitsis;Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04),2004

3. A study and analysis on various types of agricultural drones and its applications;Dileep;Proceedings of the 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN),2020

4. Vehicle Routing Problems for Drone Delivery

5. Existing Path Planning Techniques in Unmanned Aerial Vehicles (UAVs): A Systematic Review;Vashisth;Proceedings of the 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE),2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3