Near-Ground Delivery Drones Path Planning Design Based on BOA-TSAR Algorithm

Author:

Luo Yuan,Lu Jiakai,Zhang Yi,Zheng Kai,Qin Qiong,He Lin,Liu Yanyu

Abstract

With the advancement of technology and the rise of the unmanned aerial vehicle industry, the use of drones has grown tremendously. For drones performing near-ground delivery missions, the problem of 3D space-based path planning is particularly important in the autonomous navigation of drones in complex spaces. Therefore, an improved butterfly optimization (BOA-TSAR) algorithm is proposed in this paper to achieve the autonomous pathfinding of drones in 3D space. First, this paper improves the randomness strategy of the initial population generation in the butterfly optimization algorithm (BOA) via the Tent chaotic mapping method, by means of the removal of the short-period property, which balances the equilibrium of the initial solutions generated by the BOA algorithm in the solution space. Secondly, this paper improves the shortcomings of the BOA algorithm in terms of slower convergence, lower accuracy, and the existence of local optimal stagnation when dealing with high-dimensional complex functions via adaptive nonlinear inertia weights, a simulated annealing strategy, and stochasticity mutation with global adaptive features. Finally, this paper proposes an initial population generation strategy, based on the 3D line of sight (LOS) detection method, to further reduce the generation of path interruption points while ensuring the diversity of feasible solutions generated by the BOA algorithm for paths. In this paper, we verify the superior performance of BOA-TSAR by means of simulation experiments. The simulation results show that BOA-TSAR is very competitive among swarm intelligence (SI) algorithms of the same type. At the same time, the BOA-TSAR algorithm achieves the optimal path length measure and smoothness measure in the path-planning experiment.

Funder

Research Project of China Disabled Persons' Federation - on assistive technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3