BDS/IMU Integrated Auto-Navigation System of Orchard Spraying Robot

Author:

Zhang Liang,Zhu Xinghui,Huang JingjingORCID,Huang Jinqi,Xie Jingxin,Xiao Xu,Yin Gang,Wang Xiayu,Li Ming,Fang Kui

Abstract

To improve the accuracy and reliability of orchard spraying robots, an integrated navigation system was developed, consisting of a real-time kinematic positioning-Beidou satellite navigation system (RTK-BDS) receiver, an inertial measurement unit (IMU), a navigation controller, and servo motors. Using the loose coupling combination method, an error Kalman filter algorithm based on the measurement of position and heading angle is implemented to correct the error of the inertial measurement unit in real time. Combining the kinematics model and the pure pursuit model of the spraying robot, a path-tracking control algorithm is proposed. Path planning was conducted according to the terrain characteristics of orchards. Field experiments were carried out on a spraying robot to evaluate the proposed auto-navigation system. The results showed that when the spraying robot was static, the positioning performances of BDS alone and that of the BDS/IMU combined system were similar, the positioning error was less than 1.5 cm, and the heading angle errors were within 0.3°; when the spraying robot moving alone to a straight line at the speed of 0.4 m/s, the position error of the navigation system only using BDS was less than 5.29 cm, the heading angle error was within 3°, while the position error of BDS/IMU integrated navigation system was less than 2.49 cm, and the heading angle error was within 2°. The accuracy of BDS/IMU integrated navigation system is significantly improved. When the orchard spraying robot was moving at the speed of 0.4 m/s, the maximum offset error was lower than 10.77 cm, the average offset error was not higher than 3.55 cm, and the root mean square error (RMSE) of the lateral deviation was 1.19 cm. The results showed that the proposed auto-navigation system could make the spraying robot track the pre-set path smoothly and stably.

Funder

the National Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Current status and development strategies of orchard mechanization production in China;Zhao;J. China Agric. Univ.,2017

2. Research progress of orchard plant protection mechanization technology and equipment in China;Zheng;Trans. Chin. Soc. Agric. Eng.,2020

3. Research and development in agricultural robotics: A perspective of digital farming

4. LiDAR-only based navigation algorithm for an autonomous agricultural robot

5. Mobile robot motion control and autonomous navigation in GPS-denied outdoor environments using 3D laser scanning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3