Visual Navigation of Caged Chicken Coop Inspection Robot Based on Road Features

Author:

Deng Hongfeng12,Zhang Tiemin123,Li Kan12,Yang Jikang12

Affiliation:

1. State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China

2. College of Engineering, South China Agricultural University, Guangzhou 510642, China

3. National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China

Abstract

The speed and accuracy of navigation road extraction and driving stability affect the inspection accuracy of cage chicken coop inspection robots. In this paper, a new grayscale factor (4B-3R-2G) was proposed to achieve fast and accurate road extraction, and a navigation line fitting algorithm based on the road boundary features was proposed to improve the stability of the algorithm. The proposed grayscale factor achieved 92.918% segmentation accuracy, and the speed was six times faster than the deep learning model. The experimental results showed that at the speed of 0.348 m/s, the maximum deviation of the visual navigation was 4 cm, the average deviation was 1.561 cm, the maximum acceleration was 1.122 m/s2, and the average acceleration was 0.292 m/s2, with the detection number and accuracy increased by 21.125% and 1.228%, respectively. Compared with inertial navigation, visual navigation can significantly improve the navigation accuracy and stability of the inspection robot and lead to better inspection effects. The visual navigation system proposed in this paper has better driving stability, higher inspection efficiency, better inspection effect, and lower operating costs, which is of great significance to promote the automation process of large-scale cage chicken breeding and realize rapid and accurate monitoring.

Funder

Guangdong Chaozhou science and technology planning project

State Key Laboratory of Swine and Poultry Breeding Industry (PI) research project

Guangdong Province Special Fund for Modern Agricultural Industry Common Key Technology R&D Innovation Team

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3