Abstract
Most modern mobile cyber-physical systems such as smartphones come equipped with multi-processor systems-on-chip (MPSoCs) with variant computing capacity both to cater to performance requirements and reduce power consumption when executing an application. In this paper, we propose a novel approach to dynamic voltage and frequency scaling (DVFS) on CPU, GPU and RAM in a mobile MPSoC, which caters to the performance requirements of the executing application while consuming low power. We evaluate our methodology on a real hardware platform, Odroid XU4, and the experimental results prove the approach to be 26% more power-efficient and 21% more thermal-efficient compared to the state-of-the-art system.
Subject
Computer Networks and Communications
Reference43 articles.
1. Benefits of the Big. LITTLE Architecture
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Benefits_of_the_bigLITTLE_Architecture.pdf
2. Dynamic Energy and Thermal Management of Multi-core Mobile Platforms: A Survey
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献