IoT-MFaceNet: Internet-of-Things-Based Face Recognition Using MobileNetV2 and FaceNet Deep-Learning Implementations on a Raspberry Pi-400

Author:

Mohammad Ahmad Saeed1ORCID,Jarullah Thoalfeqar G.1ORCID,Al-Kaltakchi Musab T. S.2ORCID,Alshehabi Al-Ani Jabir3ORCID,Dey Somdip34ORCID

Affiliation:

1. Department of Computer Engineering, College of Engineering, Mustansiriyah University, Baghdad 10047, Iraq

2. Department of Electrical Engineering, College of Engineering, Mustansiriyah University, Baghdad 10047, Iraq

3. Department of Data Science, York St. John University, York YO31 7EL, UK

4. Nosh Technologies, 14 Miranda Walk, Colchester, Colchester CO4 3SL, UK

Abstract

IoT applications revolutionize industries by enhancing operations, enabling data-driven decisions, and fostering innovation. This study explores the growing potential of IoT-based facial recognition for mobile devices, a technology rapidly advancing within the interconnected IoT landscape. The investigation proposes a framework called IoT-MFaceNet (Internet-of-Things-based face recognition using MobileNetV2 and FaceNet deep-learning) utilizing pre-existing deep-learning methods, employing the MobileNetV2 and FaceNet algorithms on both ImageNet and FaceNet databases. Additionally, an in-house database is compiled, capturing data from 50 individuals via a web camera and 10 subjects through a smartphone camera. Pre-processing of the in-house database involves face detection using OpenCV’s Haar Cascade, Dlib’s CNN Face Detector, and Mediapipe’s Face. The resulting system demonstrates high accuracy in real-time and operates efficiently on low-powered devices like the Raspberry Pi 400. The evaluation involves the use of the multilayer perceptron (MLP) and support vector machine (SVM) classifiers. The system primarily functions as a closed set identification system within a computer engineering department at the College of Engineering, Mustansiriyah University, Iraq, allowing access exclusively to department staff for the department rapporteur room. The proposed system undergoes successful testing, achieving a maximum accuracy rate of 99.976%.

Funder

Nosh Technologies

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3