On Stochastic Optimization for Smartphone CPU Energy Consumption Decrease

Author:

Pelogeiko Makar,Sartasov Stanislav,Granichin Oleg

Abstract

Extending smartphone working time is an ongoing endeavour becoming more and more important with each passing year. It could be achieved by more advanced hardware or by introducing energy-aware practices to software, and the latter is a more accessible approach. As the CPU is one of the most power-hungry smartphone devices, Dynamic Voltage Frequency Scaling (DVFS) is a technique to adjust CPU frequency to the current computational needs, and different algorithms were already developed, both energy-aware and energy-agnostic kinds. Following our previous work on the subject, we propose a novel DVFS approach to use simultaneous perturbation stochastic approximation (SPSA) with two noisy observations for tracking the optimal frequency and implementing several algorithms based on it. Moreover, we also address an issue of hardware lag between a signal for the CPU to change frequency and its actual update. As Android OS could use a default task scheduler or an energy-aware one, which is capable of taking advantage of heterogeneous mobile CPU architectures such as ARM big.LITTLE, we also explore an integration scheme between the proposed algorithms and OS schedulers. A model-based testing methodology to compare the developed algorithms against existing ones is presented, and a test suite reflecting real-world use case scenarios is outlined. Our experiments show that the SPSA-based algorithm works well with EAS with a simplified integration scheme, showing CPU performance comparable to other energy-aware DVFS algorithms and a decreased energy consumption.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3