The Role of the Built-In Electric Field in Recombination Processes of GaN/AlGaN Quantum Wells: Temperature- and Pressure-Dependent Study of Polar and Non-Polar Structures

Author:

Koronski Kamil,Korona Krzysztof P.ORCID,Kryvyi Serhii,Wierzbicka Aleksandra,Sobczak Kamil,Krukowski StanislawORCID,Strak PawelORCID,Monroy EvaORCID,Kaminska AgataORCID

Abstract

In this paper, we present a comparative analysis of the optical properties of non-polar and polar GaN/AlGaN multi-quantum well (MQW) structures by time-resolved photoluminescence (TRPL) and pressure-dependent studies. The lack of internal electric fields across the non-polar structures results in an improved electron and hole wavefunction overlap with respect to the polar structures. Therefore, the radiative recombination presents shorter decay times, independent of the well width. On the contrary, the presence of electric fields in the polar structures reduces the emission energy and the wavefunction overlap, which leads to a strong decrease in the recombination rate when increasing the well width. Taking into account the different energy dependences of radiative recombination in non-polar and polar structures of the same geometry, and assuming that non-radiative processes are energy independent, we attempted to explain the ‘S-shape’ behavior of the PL energy observed in polar GaN/AlGaN QWs, and its absence in non-polar structures. This approach has been applied previously to InGaN/GaN structures, showing that the interplay of radiative and non-radiative recombination processes can justify the ‘S-shape’ in polar InGaN/GaN MQWs. Our results show that the differences in the energy dependences of radiative and non-radiative recombination processes cannot explain the ‘S-shape’ behavior by itself, and localization effects due to the QW width fluctuation are also important. Additionally, the influence of the electric field on the pressure behavior of the investigated structures was studied, revealing different pressure dependences of the PL energy in non-polar and polar MQWs. Non-polar MQWs generally follow the pressure dependence of the GaN bandgap. In contrast, the pressure coefficients of the PL energy in polar QWs are highly reduced with respect to those of the bulk GaN, which is due to the hydrostatic-pressure-induced increase in the piezoelectric field in quantum structures and the nonlinear behavior of the piezoelectric constant.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3