Abstract
Quadcopter unmanned aerial vehicles continue to play important roles in several applications and the improvement of their control performance has been explored in a great number of studies. In this paper, we present an altitude control algorithm for quadcopters that consists of a combination of nonlinear and linear controllers. The smooth transition between the nonlinear and linear modes are guaranteed through controller gains that are obtained based on mathematical analysis. The proposed controller takes advantage and addresses some known shortcomings of the conventional proportional–integral–derivative control method. The algorithm is simple to implement, and we prove its stability through the Lyapunov theory. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our control method to that of a conventional proportional–derivative–integral approach. Furthermore, we use a DJI-F450 drone equipped with a laser ranging sensor as the experimental quadcopter platform to evaluate the performance of our new controller in real flight conditions. Numerical simulation and experimental results demonstrate the effectiveness of the proposed algorithm.
Funder
The Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement of Technology (KIAT)
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献