Finite-Time Robust Flight Control of Logistic Unmanned Aerial Vehicles Using a Time-Delay Estimation Technique

Author:

Ma Jinyu12ORCID,Yu Shengdong34ORCID,Hu Wenke34,Wu Hongyuan34,Li Xiaopeng34,Zheng Yilong34,Zhang Junhui34,Chen Puhui1

Affiliation:

1. School of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou 325000, China

3. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China

4. School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325000, China

Abstract

This paper proposes a cascaded dual closed-loop control strategy that incorporates time delay estimation and sliding mode control (SMC) to address the issue of uncertain disturbances in logistic unmanned aerial vehicles (UAVs) caused by ground effects, crosswind disturbances, and payloads. The control strategy comprises a position loop and an attitude loop. The position loop, which functions as the outer loop, employs a proportional–integral–derivative (PID) sliding mode surface to eliminate steady-state error through an integral component. Conversely, the attitude loop, serving as the inner loop, utilizes a fast nonsingular terminal sliding mode approach to achieve finite-time convergence and ensure a quick system response. The time-delay estimation technique is employed for the online estimation and real-time compensation of unknown disturbances, while SMC is used to enhance the robustness of the control system. The combination of time-delay estimation and SMC offers complementary advantages. The stability of the system is proven using Lyapunov theory. Hardware-in-the-loop simulation and flight tests demonstrate that the control law can achieve a smooth and continuous output. The proposed control strategy can be effectively applied in complex scenarios, such as hovering, crash recovery, and high maneuverability flying, with significant practicality in engineering applications.

Funder

Wenzhou Scientific Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3