BM-IQE: An Image Quality Evaluator with Block-Matching for Both Real-Life Scenes and Remote Sensing Scenes

Author:

Xu NingshanORCID,Ma Dongao,Ren Guoqiang,Huang Yongmei

Abstract

Like natural images, remote sensing scene images; of which the quality represents the imaging performance of the remote sensor, also suffer from the degradation caused by imaging system. However, current methods measuring the imaging performance in engineering applications require for particular image patterns and lack generality. Therefore, a more universal approach is demanded to assess the imaging performance of remote sensor without constraints of land cover. Due to the fact that existing general-purpose blind image quality assessment (BIQA) methods cannot obtain satisfying results on remote sensing scene images; in this work, we propose a BIQA model of improved performance for natural images as well as remote sensing scene images namely BM-IQE. We employ a novel block-matching strategy called Structural Similarity Block-Matching (SSIM-BM) to match and group similar image patches. In this way, the potential local information among different patches can get expressed; thus, the validity of natural scene statistics (NSS) feature modeling is enhanced. At the same time, we introduce several features to better characterize and express remote sensing images. The NSS features are extracted from each group and the feature vectors are then fitted to a multivariate Gaussian (MVG) model. This MVG model is therefore used against a reference MVG model learned from a corpus of high-quality natural images to produce a basic quality estimation of each patch (centroid of each group). The further quality estimation of each patch is obtained by weighting averaging of its similar patches’ basic quality estimations. The overall quality score of the test image is then computed through average pooling of the patch estimations. Extensive experiments demonstrate that the proposed BM-IQE method can not only outperforms other BIQA methods on remote sensing scene image datasets but also achieve competitive performance on general-purpose natural image datasets as compared to existing state-of-the-art FR/NR-IQA methods.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3