Abstract
Object detection is a common application within the computer vision area. Its tasks include the classic challenges of object localization and classification. As a consequence, object detection is a challenging task. Furthermore, this technique is crucial for maritime applications since situational awareness can bring various benefits to surveillance systems. The literature presents various models to improve automatic target recognition and tracking capabilities that can be applied to and leverage maritime surveillance systems. Therefore, this paper reviews the available models focused on localization, classification, and detection. Moreover, it analyzes several works that apply the discussed models to the maritime surveillance scenario. Finally, it highlights the main opportunities and challenges, encouraging new research in this area.
Funder
National Council for Scientific and Technological Development
FAPESP
MCTIC
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献