Traffic image dehazing based on sky region segmentation and transmittance optimization

Author:

Chenmin Ni12,Marsani Muhammad Fadhil2,Shan Fam Pei2

Affiliation:

1. School of International Business, Zhejiang Yuexiu University, Shaoxing, China

2. School of Mathematical Sciences, Universiti Sains Malaysia, USM Penang, Malaysia

Abstract

Traffic sign recognition is of great significance to promote traffic sustainability and maintain traffic safety. GPS monitoring systems and advanced autonomous vehicles are often heavily reliant on camera imagery. Algorithms based on dark channel prior are susceptible to color distortion when processing traffic images containing bright sky or high-brightness areas, which can negatively impact the identification of traffic signals and signage located in elevated positions. To address this issue, this paper proposes a dehazing algorithm (SRSTO) that combines sky region segmentation and transmittance optimization. Firstly, the gradient, brightness and saturation information are calculated, followed by the construction of a threshold function used in area segmentation. This approach is utilized to partition the image into areas not containing sky highlights and the area that contains them. Subsequently, the dark channel images of the sky and the non-sky regions are acquired, morphological operations are further performed in layers and blocks, and then the atmospheric scattered light value is calculated. Secondly, the functional relationship between the transmittance of the sky region and the brightness of the image is constructed, the transmittance of the sky and the non-sky region are optimized, and the transmittance map is further improved by using guided filtering. A simulated annealing algorithm is employed to intelligently optimize parameters such as sky segmentation threshold and sky brightness area transmittance, followed by improving the adaptability of the algorithm. Finally, combined with Gaussian filtering and Sobel edge enhancement, the image brightness is further adjusted. Using Information Entropy and NIQE as objective evaluation indexes, combined with subjective evaluation, it is concluded that the proposed method has good convergence and self-adaptive ability, and the objective indexes and subjective effects are better, especially for the hazed images containing air traffic signs.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3