Abstract
Convolutional Neural Networks (CNNs) and Deep Learning (DL) revolutionized numerous research fields including robotics, natural language processing, self-driving cars, healthcare, and others. However, DL is still relatively under-researched in physics and engineering. Recent works on DL-assisted analysis showed enormous potential of CNN applications in electrical engineering. This paper explores the possibility of developing an end-to-end DL analysis method to match or even surpass conventional analysis techniques such as finite element analysis (FEA) based on the ability of CNNs to predict the performance characteristics of electric machines. The required depth in CNN architecture is studied by comparing a simplistic CNN with three ResNet architectures. Studied CNNs show over 90% accuracy for an analysis conducted under a minute, whereas a FEA of comparable accuracy required 200 h. It is also shown that training CNNs to predict multidimensional outputs can improve CNN performance. Multidimensional output prediction with data-driven methods is further discussed in context of multiphysics analysis showing potential for developing analysis methods that might surpass FEA capabilities.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献