Affiliation:
1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
2. Zhejiang Leapmotor Technology Co., Ltd., Hangzhou 310000, China
Abstract
The rapid advancement of electric vehicles (EVs) accentuates the criticality of efficient thermal management systems for electric motors, which are pivotal for performance, reliability, and longevity. Traditional thermal modeling techniques often struggle with the dynamic and complex nature of EV operations, leading to inaccuracies in temperature prediction and management. This study introduces a novel thermal modeling approach that utilizes a multihead attention mechanism, aiming to significantly enhance the prediction accuracy of motor temperature under varying operational conditions. Through meticulous feature engineering and the deployment of advanced data handling techniques, we developed a model that adeptly navigates the intricacies of temperature fluctuations, thereby contributing to the optimization of EV performance and reliability. Our evaluation using a comprehensive dataset encompassing temperature data from 100 electric vehicles illustrates our model’s superior predictive performance, notably improving temperature prediction accuracy.
Funder
Zhejiang Province Key R&D Program Project
Public Welfare Technology Research Program/Social Development Project of Zhejiang Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献