Characterization and Analysis of Extensile Fluidic Artificial Muscles

Author:

Garbulinski JacekORCID,Balasankula Sai C.,Wereley Norman M.ORCID

Abstract

Extensile fluidic artificial muscles (EFAMs) are soft actuators known for their large ranges of extension, low weight, and blocked forces comparable to those of pneumatic cylinders. EFAMs have yet to be studied in a way that thoroughly focuses on their manufacturing, experimental characterization, and modeling. A fabrication method was developed for production of two EFAMs. The quasi-static axial force response of EFAMs to varying displacement was measured by testing two specimens under isobaric conditions over a pressure range of 103.4–517.1 kPa (15–75 psi) with 103.4 kPa (15 psi) increments. The muscles were characterized by a blocked force of 280 N and a maximum stroke of 98% at 517.1 kPa (75 psi). A force-balance model was used to analyze EFAM response. Prior work employing the force-balance approach used hyper-elastic constitutive models based on polynomial expressions. In this study, these models are validated for EFAMs, and new constitutive models are proposed that better represent the measured stress values of rubber as a function of strain. These constitutive models are compared in terms of accuracy when estimating pressure-dependent stress–strain relationships of the bladder material. The analysis demonstrates that the new hyper-elastic stress models have an error 5% smaller than models previously employed for EFAMs for the same number of coefficients. Finally, the analysis suggests that the new stress functions have smaller errors than the polynomial stress model with the same number of coefficients, guarantee material stability, and are more conservative about the stress values for strains outside of the testing range.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3