A Distributed Fusion Framework of Multispectral and Panchromatic Images Based on Residual Network

Author:

Wu Yuanyuan,Huang Mengxing,Li Yuchun,Feng Siling,Wu Di

Abstract

Remote sensing images have been widely applied in various industries; nevertheless, the resolution of such images is relatively low. Panchromatic sharpening (pan-sharpening) is a research focus in the image fusion domain of remote sensing. Pan-sharpening is used to generate high-resolution multispectral (HRMS) images making full use of low-resolution multispectral (LRMS) images and panchromatic (PAN) images. Traditional pan-sharpening has the problems of spectral distortion, ringing effect, and low resolution. The convolutional neural network (CNN) is gradually applied to pan-sharpening. Aiming at the aforementioned problems, we propose a distributed fusion framework based on residual CNN (RCNN), namely, RDFNet, which realizes the data fusion of three channels. It can make the most of the spectral information and spatial information of LRMS and PAN images. The proposed fusion network employs a distributed fusion architecture to make the best of the fusion outcome of the previous step in the fusion channel, so that the subsequent fusion acquires much more spectral and spatial information. Moreover, two feature extraction channels are used to extract the features of MS and PAN images respectively, using the residual module, and features of different scales are used for the fusion channel. In this way, spectral distortion and spatial information loss are reduced. Employing data from four different satellites to compare the proposed RDFNet, the results of the experiment show that the proposed RDFNet has superior performance in improving spatial resolution and preserving spectral information, and has good robustness and generalization in improving the fusion quality.

Funder

Hainan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3