RADFNet: An infrared and visible image fusion framework based on distributed network

Author:

Feng Siling,Wu Can,Lin Cong,Huang Mengxing

Abstract

IntroductionThe fusion of infrared and visible images can improve image quality and eliminate the impact of changes in the agricultural working environment on the information perception of intelligent agricultural systems.MethodsIn this paper, a distributed fusion architecture for infrared and visible image fusion is proposed, termed RADFNet, based on residual CNN (RDCNN), edge attention, and multiscale channel attention. The RDCNN-based network realizes image fusion through three channels. It employs a distributed fusion framework to make the most of the fusion output of the previous step. Two channels utilize residual modules with multiscale channel attention to extract the features from infrared and visible images, which are used for fusion in the other channel. Afterward, the extracted features and the fusion results from the previous step are fed to the fusion channel, which can reduce the loss in the target information from the infrared image and the texture information from the visible image. To improve the feature learning effect of the module and information quality in the fused image, we design two loss functions, namely, pixel strength with texture loss and structure similarity with texture loss.Results and discussionExtensive experimental results on public datasets demonstrate that our model has superior performance in improving the fusion quality and has achieved comparable results over the state-of-the-art image fusion algorithms in terms of visual effect and quantitative metrics.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference63 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3