A Three Stages Detail Injection Network for Remote Sensing Images Pansharpening

Author:

Wu Yuanyuan,Feng Siling,Lin Cong,Zhou Haijie,Huang Mengxing

Abstract

Multispectral (MS) pansharpening is crucial to improve the spatial resolution of MS images. MS pansharpening has the potential to provide images with high spatial and spectral resolutions. Pansharpening technique based on deep learning is a topical issue to deal with the distortion of spatio-spectral information. To improve the preservation of spatio-spectral information, we propose a novel three-stage detail injection pansharpening network (TDPNet) for remote sensing images. First, we put forward a dual-branch multiscale feature extraction block, which extracts four scale details of panchromatic (PAN) images and the difference between duplicated PAN and MS images. Next, cascade cross-scale fusion (CCSF) employs fine-scale fusion information as prior knowledge for the coarse-scale fusion to compensate for the lost information during downsampling and retain high-frequency details. CCSF combines the fine-scale and coarse-scale fusion based on residual learning and prior information of four scales. Last, we design a multiscale detail compensation mechanism and a multiscale skip connection block to reconstruct injecting details, which strengthen spatial details and reduce parameters. Abundant experiments implemented on three satellite data sets at degraded and full resolutions confirm that TDPNet trades off the spectral information and spatial details and improves the fidelity of sharper MS images. Both the quantitative and subjective evaluation results indicate that TDPNet outperforms the compared state-of-the-art approaches in generating MS images with high spatial resolution.

Funder

Hainan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3