A Shadow Capture Deep Neural Network for Underwater Forward-Looking Sonar Image Detection

Author:

Xiao Taowen1,Cai Zijian1,Lin Cong1ORCID,Chen Qiong2ORCID

Affiliation:

1. College of Electronics and Information Engineering, Guangdong Ocean University, Zhangjiang 524025, China

2. Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China

Abstract

Image sonar is a widely used wireless communication technology for detecting underwater objects, but the detection process often leads to increased difficulty in object identification due to the lack of equipment resolution. In view of the remarkable results achieved by artificial intelligence techniques in the field of underwater wireless communication research, we propose an object detection method based on convolutional neural network (CNN) and shadow information capture to improve the object recognition and localization effect of underwater sonar images by making full use of the shadow information of the object. We design a Shadow Capture Module (SCM) that can capture the shadow information in the feature map and utilize them. SCM is compatible with CNN models that have a small increase in parameters and a certain degree of portability, and it can effectively alleviate the recognition difficulties caused by the lack of device resolution through referencing shadow features. Through extensive experiments on the underwater sonar data set provided by Pengcheng Lab, the proposed method can effectively improve the feature representation of the CNN model and enhance the difference between class and class features. Under the main evaluation standard of PASCAL VOC 2012, the proposed method improved from an average accuracy (mAP) of 69.61% to 75.73% at an IOU threshold of 0.7, which exceeds many existing conventional deep learning models, while the lightweight design of our proposed module is more helpful for the implementation of artificial intelligence technology in the field of underwater wireless communication.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3