Fine-Grained Tidal Flat Waterbody Extraction Method (FYOLOv3) for High-Resolution Remote Sensing Images

Author:

Zhang Lili,Fan Yu,Yan Ruijie,Shao Yehong,Wang Gaoxu,Wu Jisen

Abstract

The tidal flat is long and narrow area along rivers and coasts with high sediment content, so there is little feature difference between the waterbody and the background, and the boundary of the waterbody is blurry. The existing waterbody extraction methods are mostly used for the extraction of large water bodies like rivers and lakes, whereas less attention has been paid to tidal flat waterbody extraction. Extracting tidal flat waterbody accurately from high-resolution remote sensing imagery is a great challenge. In order to solve the low accuracy problem of tidal flat waterbody extraction, we propose a fine-grained tidal flat waterbody extraction method, named FYOLOv3, which can extract tidal flat water with high accuracy. The FYOLOv3 mainly includes three parts: an improved object detection network based on YOLOv3 (Seattle, WA, USA), a fully convolutional network (FCN) without pooling layers, and a similarity algorithm for water extraction. The improved object detection network uses 13 convolutional layers instead of Darknet-53 as the model backbone network, which guarantees the water detection accuracy while reducing the time cost and alleviating the overfitting phenomenon; secondly, the FCN without pooling layers is proposed to obtain the accurate pixel value of the tidal flat waterbody by learning the semantic information; finally, a similarity algorithm for water extraction is proposed to distinguish the waterbody from non-water pixel by pixel to improve the extraction accuracy of tidal flat water bodies. Compared to the other convolutional neural network (CNN) models, the experiments show that our method has higher accuracy on the waterbody extraction of tidal flats from remote sensing images, and the IoU of our method is 2.43% higher than YOLOv3 and 3.7% higher than U-Net (Freiburg, Germany).

Funder

National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Research on urban development and wetland protection in China;Shao;J. Ecol. Environ.,2018

2. Comprehensive treatment and water quality simulation of Nanming River in Guizhou;Li;J. Environ. Sci.,2018

3. Application status and Prospect of satellite remote sensing water resources survey and monitoring;Jin;Surv. Mapp. Bull.,2020

4. Visual interpretation of satellite imagery for monitoring floods in Bangladesh

5. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3