A NOVEL HYBRID MODEL BASED ON CNN AND MULTI-SCALE TRANSFORMER FOR EXTRACTING WATER BODIES FROM HIGH RESOLUTION REMOTE SENSING IMAGES

Author:

Zhang Q.,Hu X.,Xiao Y.

Abstract

Abstract. Extracting water bodies from high-resolution remote sensing images has always been a challenging and hot task in the field of remote sensing. Considering that the accuracy and reliability of water body extraction still have some room for improvement, this paper proposes a hybrid network model based on CNN and multi-scale transformer for water body extraction from high-resolution remote sensing images. Specifically, the proposed network first uses a CNN model to extract a series of multi-scale features from shallow to deep from remote sensing images. These multi-scale features are then fed into a designed multi-scale transformer module to extract global contextual association information of water bodies. Afterwards, the water separability in the new multi-scale features output from the multi-scale transformer module is evaluated separately, and the features at different scales are adaptively weighted and fused according to their water separability. Subsequently, the network adaptively refines the fused features with the aid of a hybrid attention model to generate refined features that can effectively distinguish between water bodies and non-water bodies. Finally, these refined features are input into the prediction head to generate the final water body extraction results. The proposed network integrates the ability of CNN to capture local detail features and the ability of transformer to model global contextual semantic associations in a large range. Therefore, it can more accurately identify water bodies in remote sensing images, and the extracted water body boundaries have high accuracy and continuity. Finally, water body extraction experiments on the public dataset demonstrate the effectiveness of the proposed network. Moreover, the results of comparative experiments also show that compared with existing networks or methods such as U-Net, FCN8s, DeepLabv3+, and MSFA-Net, the proposed network has certain advantages in terms of water body extraction accuracy.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3