Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion

Author:

Cao Huidong,Tian Yanbing,Liu Yanli,Wang Ruihua

Abstract

AbstractEmploying deep learning techniques for the semantic segmentation of remote sensing images has emerged as a prevalent approach for acquiring information about water bodies. Yet, current models frequently fall short in accurately extracting water bodies from high-resolution remote sensing images, as these images often present intricate details of terrestrial objects and complex backgrounds. Vegetation, shadows, and other objects close to water boundaries have increased similarity to water bodies. Moreover, water bodies in high-resolution images have different boundary complexities, shapes, and sizes. This situation makes it somewhat challenging to accurately distinguish water bodies in high-resolution images. To overcome these difficulties, this paper presents a novel network model named EU-Net, specifically designed to extract water bodies from high-resolution remote sensing images. The proposed EU-Net model, with U-net as the backbone network, incorporates improved residual connections and attention mechanisms, and designs multi-scale dilated convolution and multi-scale feature fusion modules to enhance water body extraction performance in complex scenarios. Specifically, in the proposed model, improved residual connections are introduced to enable the learning of more complex features; the attention mechanism is employed to improve the model's discriminative ability by focusing on important channels and spatial areas. The implemented multi-scale dilated convolution technique enhances the model's receptive field while maintaining the same number of parameters. The designed multi-scale feature fusion module is capable of processing both small-scale details and large-scale structures in images, while simultaneously modeling the spatial context relationships of features at different scales. Experimental results validate the superior performance of EU-Net in accurately identifying water bodies from high-resolution remote sensing images, outperforming current models in terms of water extraction accuracy.

Funder

Qingdao University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3