Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine

Author:

Ghorbanian ArsalanORCID,Zaghian SoheilORCID,Asiyabi Reza MohammadiORCID,Amani MeisamORCID,Mohammadzadeh AliORCID,Jamali SadeghORCID

Abstract

Mangroves are among the most productive ecosystems in existence, with many ecological benefits. Therefore, generating accurate thematic maps from mangrove ecosystems is crucial for protecting, conserving, and reforestation planning for these valuable natural resources. In this paper, Sentinel-1 and Sentinel-2 satellite images were used in synergy to produce a detailed mangrove ecosystem map of the Hara protected area, Qeshm, Iran, at 10 m spatial resolution within the Google Earth Engine (GEE) cloud computing platform. In this regard, 86 Sentinel-1 and 41 Sentinel-2 data, acquired in 2019, were employed to generate seasonal optical and synthetic aperture radar (SAR) features. Afterward, seasonal features were inserted into a pixel-based random forest (RF) classifier, resulting in an accurate mangrove ecosystem map with average overall accuracy (OA) and Kappa coefficient (KC) of 93.23% and 0.92, respectively, wherein all classes (except aerial roots) achieved high producer and user accuracies of over 90%. Furthermore, comprehensive quantitative and qualitative assessments were performed to investigate the robustness of the proposed approach, and the accurate and stable results achieved through cross-validation and consistency checks confirmed its robustness and applicability. It was revealed that seasonal features and the integration of multi-source remote sensing data contributed towards obtaining a more reliable mangrove ecosystem map. The proposed approach relies on a straightforward yet effective workflow for mangrove ecosystem mapping, with a high rate of automation that can be easily implemented for frequent and precise mapping in other parts of the world. Overall, the proposed workflow can further improve the conservation and sustainable management of these valuable natural resources.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3