Land Cover Mapping in a Mangrove Ecosystem Using Hybrid Selective Kernel-Based Convolutional Neural Networks and Multi-Temporal Sentinel-2 Imagery

Author:

Seydi Seyd Teymoor1ORCID,Ahmadi Seyed Ali2ORCID,Ghorbanian Arsalan2ORCID,Amani Meisam34ORCID

Affiliation:

1. School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran

2. Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran

3. WSP Environment and Infrastructure Canada Limited, Ottawa, ON K2E 7L5, Canada

4. Canada Center for Mapping and Earth Observation, Ottawa, ON K1S 5K2, Canada

Abstract

Mangrove ecosystems provide numerous ecological services and serve as vital habitats for a wide range of flora and fauna. Thus, accurate mapping and monitoring of relevant land covers in mangrove ecosystems are crucial for effective conservation and management efforts. In this study, we proposed a novel approach for mangrove ecosystem mapping using a Hybrid Selective Kernel-based Convolutional Neural Network (HSK-CNN) framework and multi-temporal Sentinel-2 imagery. A time series of the Normalized Difference Vegetation Index (NDVI) products derived from Sentinel-2 imagery was produced to capture the temporal behavior of land cover types in the dynamic ecosystem of the study area. The proposed algorithm integrated Selective Kernel-based feature extraction techniques to facilitate the effective learning and classification of multiple land cover types within the dynamic mangrove ecosystems. The model demonstrated a high Overall Accuracy (OA) of 94% in classifying eight land cover classes, including mangrove, tidal zone, water, mudflat, urban, and vegetation. The HSK-CNN demonstrated superior performance compared to other algorithms, including random forest (OA = 85%), XGBoost (OA = 87%), Three-Dimensional (3D)-DenseNet (OA = 90%), Two-Dimensional (2D)-CNN (OA = 91%), Multi-Layer Perceptron (MLP)-Mixer (OA = 92%), and Swin Transformer (OA = 93%). Additionally, it was observed that the structure of the network, such as the types of convolutional layers and patch sizes, affected the classification accuracy using the proposed model and, thus, the optimum scenarios and values of these parameters should be determined to obtain the highest possible classification accuracy. Overall, it was observed that the produced map could offer valuable insights into the distribution of different land cover types in the mangrove ecosystem, facilitating informed decision-making for conservation and sustainable management efforts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3