Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan

Author:

Win Kyaw1ORCID,Sato Tamotsu12ORCID,Tsuyuki Satoshi1ORCID

Affiliation:

1. Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan

2. Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan

Abstract

Surface soil moisture (SSM) is a key parameter for land surface hydrological processes. In recent years, satellite remote sensing images have been widely used for SSM estimation, and many methods based on satellite-derived spectral indices have also been used to estimate the SSM content in various climatic conditions and geographic locations. However, achieving an accurate estimation of SSM content at a high spatial resolution remains a challenge. Therefore, improving the precision of SSM estimation through the synergies of multi-source remote sensing data has become imperative, particularly for informing forest management practices. In this study, the integration of multi-source remote sensing data with random forest and support vector machine models was conducted using Google Earth Engine in order to estimate the SSM content and develop SSM maps for temperate forests in central Japan. The synergy of Sentinel-2 and terrain factors, such as elevation, slope, aspect, slope steepness, and valley depth, with the random forest model provided the most suitable approach for SSM estimation, yielding the highest accuracy values (overall accuracy for testing = 91.80%, Kappa = 87.18%, r = 0.98) for the temperate forests of central Japan. This finding provides more valuable information for SSM mapping, which shows promise for precision forestry applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3