Extraction of Agricultural Fields via DASFNet with Dual Attention Mechanism and Multi-scale Feature Fusion in South Xinjiang, China

Author:

Lu RuiORCID,Wang Nan,Zhang Yanbin,Lin Yeneng,Wu Wenqiang,Shi ZhouORCID

Abstract

Agricultural fields are essential in providing human beings with paramount food and other materials. Quick and accurate identification of agricultural fields from the remote sensing images is a crucial task in digital and precision agriculture. Deep learning methods have the advantages of fast and accurate image segmentation, especially for extracting the agricultural fields from remote sensing images. This paper proposed a deep neural network with a dual attention mechanism and a multi-scale feature fusion (Dual Attention and Scale Fusion Network, DASFNet) to extract the cropland from a GaoFen-2 (GF-2) image of 2017 in Alar, south Xinjiang, China. First, we constructed an agricultural field segmentation dataset from the GF-2 image. Next, seven evaluation indices were selected to assess the extraction accuracy, including the location shift, to reveal the spatial relationship and facilitate a better evaluation. Finally, we proposed DASFNet incorporating three ameliorated and novel deep learning modules with the dual attention mechanism and multi-scale feature fusion methods. The comparison of these modules indicated their effects and advantages. Compared with different segmentation convolutional neural networks, DASFNet achieved the best testing accuracy in extracting fields with an F1-score of 0.9017, an intersection over a union of 0.8932, a Kappa coefficient of 0.8869, and a location shift of 1.1752 pixels. Agricultural fields can be extracted automatedly and accurately using DASFNet, which reduces the manual record of the agricultural field information and is conducive to further farmland surveys, protection, and management.

Funder

National Key Research and Development Program of China

Ten-thousand Talents Plan of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3