FAUNet: Frequency Attention U-Net for Parcel Boundary Delineation in Satellite Images

Author:

Awad Bahaa1,Erer Isin1

Affiliation:

1. Electronics and Communication Engineering Department, Faculty of Electrical and Electronics Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey

Abstract

Parcel detection and boundary delineation play an important role in numerous remote sensing applications, such as yield estimation, crop type classification, and farmland management systems. Consequently, achieving accurate boundary delineation remains a prominent research area within remote sensing literature. In this study, we propose a straightforward yet highly effective method for boundary delineation that leverages frequency attention to enhance the precision of boundary detection. Our approach, named Frequency Attention U-Net (FAUNet), builds upon the foundational and successful U-Net architecture by incorporating a frequency-based attention gate to enhance edge detection performance. Unlike many similar boundary delineation methods that employ three segmentation masks, our network employs only two, resulting in a more streamlined post-processing workflow. The essence of frequency attention lies in the integration of a frequency gate utilizing a high-pass filter. This high-pass filter output accentuates the critical high-frequency components within feature maps, thereby significantly improves edge detection performance. Comparative evaluation of FAUNet against alternative models demonstrates its superiority across various pixel-based and object-based metrics. Notably, FAUNet achieves a pixel-based precision, F1 score, and IoU of 0.9047, 0.8692, and 0.7739, respectively. In terms of object-based metrics, FAUNet demonstrates minimal over-segmentation (OS) and under-segmentation (US) errors, with values of 0.0341 and 0.1390, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BAFormer: A Novel Boundary-Aware Compensation UNet-like Transformer for High-Resolution Cropland Extraction;Remote Sensing;2024-07-10

2. Evaluation of computer vision pipeline for farm-level analytics: A case study in Sugarcane;Proceedings of the 7th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies;2024-07-08

3. High-Frequency Attention U-Net for Road Segmentation in High-Resolution Remote Sensing Imagery;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3