Impact of Deep Convolutional Neural Network Structure on Photovoltaic Array Extraction from High Spatial Resolution Remote Sensing Images

Author:

Li Liang12,Lu Ning13ORCID,Jiang Hou1ORCID,Qin Jun13

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, No. 1, Wenyuan Road, Qixia, Nanjing 210023, China

Abstract

Accurate information on the location, shape, and size of photovoltaic (PV) arrays is essential for optimal power system planning and energy system development. In this study, we explore the potential of deep convolutional neural networks (DCNNs) for extracting PV arrays from high spatial resolution remote sensing (HSRRS) images. While previous research has mainly focused on the application of DCNNs, little attention has been paid to investigating the influence of different DCNN structures on the accuracy of PV array extraction. To address this gap, we compare the performance of seven popular DCNNs—AlexNet, VGG16, ResNet50, ResNeXt50, Xception, DenseNet121, and EfficientNetB6—based on a PV array dataset containing 2072 images of 1024 × 1024 size. We evaluate their intersection over union (IoU) values and highlight four DCNNs (EfficientNetB6, Xception, ResNeXt50, and VGG16) that consistently achieve IoU values above 94%. Furthermore, through analyzing the difference in the structure and features of these four DCNNs, we identify structural factors that contribute to the extraction of low-level spatial features (LFs) and high-level semantic features (HFs) of PV arrays. We find that the first feature extraction block without downsampling enhances the LFs’ extraction capability of the DCNNs, resulting in an increase in IoU values of approximately 0.25%. In addition, the use of separable convolution and attention mechanisms plays a crucial role in improving the HFs’ extraction, resulting in a 0.7% and 0.4% increase in IoU values, respectively. Overall, our study provides valuable insights into the impact of DCNN structures on the extraction of PV arrays from HSRRS images. These findings have significant implications for the selection of appropriate DCNNs and the design of robust DCNNs tailored for the accurate and efficient extraction of PV arrays.

Funder

National Natural Science Foundation of China

Third Xinjiang Scientific Expedition Program

Key Project of Innovation LREIS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. The social and economic consequences of the fossil fuel supply chain;Olson;MRS Energy Sustain.,2016

2. A review of Safety, Health and Environmental (SHE) issues of solar energy system;Aman;Renew. Sustain. Energy Rev.,2015

3. City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China;Yan;Nat. Energy,2019

4. International Renewable Energy Agency (2023, August 31). Renewable Capacity Statistics. Available online: https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023.

5. Generation Expansion Planning Considering the Output and Flexibility Requirement of Renewable Energy: The Case of Jiangsu Province;Lv;Front. Energy Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3