Extraction of Partial Discharge Pulses from the Complex Noisy Signals of Power Cables Based on CEEMDAN and Wavelet Packet

Author:

Sun ,Zhang ,Shi ,Gou

Abstract

While both periodic narrowband noise and white noise are significant sources of interference in the detection and localization of partial discharge (PD) signals in power cables, existing research has focused nearly exclusively on white noise suppression. This paper addresses this issue by proposing a new signal extraction method for effectively detecting random PD signals in power cables subject to complex noise environments involving both white noise and periodic narrowband noise. Firstly, the power cable signal was decomposed using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the periodic narrowband noise and frequency aliasing in the obtained signal components were suppressed using singular value decomposition. Then, signal components contributing significantly to the PD signal were determined according to the cross-correlation coefficient between each component and the original PD signal, and the PD signal was reconstructed solely from the obtained significant components. Finally, the wavelet packet threshold method was used to filter out residual white noise in the reconstructed PD signal. The performance of the proposed algorithm was demonstrated by its application to synthesized PD signals with complex noise environments composed of both Gaussian white noise and periodic narrowband noise. In addition, the time-varying kurtosis method was demonstrated to accurately determine the PD signal arrival time when applied to PD signals extracted by the proposed method from synthesized signals in complex noise environments with signal-to-noise ratio (SNR) values as low as −6 dB. When the SNR was reduced to −23 dB, the arrival time error of the PD signal was only one sampling point.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3