Partial Discharges in Insulating Systems of Low Voltage Electric Motors Fed by Power Electronics—Twisted-Pair Samples Evaluation

Author:

Florkowski Marek,Florkowska Barbara,Zydron PawelORCID

Abstract

Power electronics switching devices currently represent the dominant technology for supplying low voltage (LV) electric motors. The fast switching processes exert a different class of stress on dielectric insulating materials than standard sinusoidal excitations. Such stresses result in an increase in the dynamic activity of the working electric field, which in turn lead to an increased likelihood of partial discharges (PD). The stator design of low voltage motor is often in form of random-wound windings, where the magnet wires (copper or aluminum round wires coated with thin layer of insulation) form a common system of coils with not precisely defined mutual position of particular turns, resulting in various turn-to-turn and coil-to-coil voltage distributions. Pulse Width Modulated (PWM) voltage waveforms from modern electronic inverters are characterized by very short rise times and presence of repetitively occurring overvoltages that can significantly stress the insulation of feeding cables and motors. These factors influence the inception and dynamics of PD and processes of space charge accumulation in electrical insulation. In this paper investigations performed on round magnet wire twisted-pair samples representing LV motor random-wound winding elements are presented. Special attention was afforded to the twist configurations, observed breakdown voltage and PD activity. To describe the field conditions for the formation of PD in the turn-to-turn insulation system, the results of numerical simulations of electric field distributions for winding wires with different diameters, modeled using the COMSOL program, were analyzed. PD created in the insulating systems of model twisted-pair systems were registered and analyzed using the phase resolved partial discharge analysis (PRPDA) method.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3