Accurate Identification of Partial Discharge Signals in Cable Terminations of High-Speed Electric Multiple Unit Using Wavelet Transform and Deep Belief Network

Author:

Liu Zhengwei1,Li Jiali2,Zhang Tingyu2,Chen Shuai2,Xin Dongli2,Liu Kai2,Chen Kui2,Liu Yong-Chao3ORCID,Sun Chuanming24,Gao Guoqiang2,Wu Guangning2

Affiliation:

1. CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China

2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

3. Energy Department, UTBM, Université Bourgogne Franche-Comté, 90010 Belfort, France

4. CRRC Qingdao Sifang Co., Ltd., Qingdao 266000, China

Abstract

Cable termination serves as a crucial carrier for high-speed train power transmission and a weak part of the cable insulation system. Partial discharge detection plays a significant role in evaluating insulation status. However, field testing signals are often contaminated by external corona interference, which affects detection accuracy. This paper proposes a classification model based on wavelet transform (WT) and deep belief network (DBN) to accurately and rapidly identify corona discharge in the partial discharge signals of vehicle-mounted cable terminals. The method utilizes wavelet transform for noise reduction, employing the sigmoid activation function and analyzing the impact of WT on DBN classification performance. Research indicates that this method can achieve an accuracy of over 89% even with limited training samples. Finally, the reliability of the proposed classification model is verified using measured mixed signals.

Funder

National Natural Science Foundation of China

Excellent Young Scientists Fund of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference79 articles.

1. Xin, D., Wu, G., Chen, K., Liu, K., Xie, Y., Gao, G., Xiao, S., Tang, Y., Sun, C., and Lin, M. (2023). Research on the evolution characteristics of interfacial defect inside the vehicle-mounted high-voltage cable termination for high-speed trains. CSEE J. Power Energy Syst., 1–13.

2. Yang, Y., Li, J., Chen, Z., Liu, Y.-C., Chen, K., Liu, K., Xin, D.-L., Gao, G., and Wu, G. (2024). Classification of partial discharge in vehicle-mounted cable termination of high-speed electric multiple unit: A machine learning-based approach. Electronics, 13.

3. Sun, C., Wu, G., Pan, G., Zhang, T., Li, J., Jiao, S., Liu, Y.-C., Chen, K., Liu, K., and Xin, D. (2024). Convolutional neural network-based pattern recognition of partial discharge in high-speed EMU cable termination. Sensors, 24.

4. Understanding of DC partial discharge: Recent progress, challenges, and outlooks;Li;CSEE J. Power Energy Syst.,2022

5. Electric field distribution and performance optimization of high-speed train cable termination with internal defects;Tang;Eng. Fail. Anal.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3