Electrical and Recombination Properties of Polar Orthorhombic κ-Ga2O3 Films Prepared by Halide Vapor Phase Epitaxy

Author:

Yakimov Eugene B.12ORCID,Polyakov Alexander Y.2ORCID,Nikolaev Vladimir I.234,Pechnikov Alexei I.234,Scheglov Mikhail P.24,Yakimov Eugene E.1,Pearton Stephen J.5

Affiliation:

1. Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, 6 Academician Ossipyan Str., Chernogolovka 142432, Russia

2. Department of Semiconductor Electronics and Physics of Semiconductors, National University of Science and Technology MISiS, 4 Leninsky Avenue, Moscow 119049, Russia

3. Perfect Crystals LLC, 28 Politekhnicheskaya Str., St. Petersburg 194064, Russia

4. Ioffe Institute, 26 Polytekhnicheskaya Str., St. Petersburg 194021, Russia

5. Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

In this study, the structural and electrical properties of orthorhombic κ-Ga2O3 films prepared using Halide Vapor Phase Epitaxy (HVPE) on AlN/Si and GaN/sapphire templates were studied. For κ-Ga2O3/AlN/Si structures, the formation of two-dimensional hole layers in the Ga2O3 was studied and, based on theoretical calculations, was explained by the impact of the difference in the spontaneous polarizations of κ-Ga2O3 and AlN. Structural studies indicated that in the thickest κ-Ga2O3/GaN/sapphire layer used, the formation of rotational nanodomains was suppressed. For thick (23 μm and 86 μm) κ-Ga2O3 films grown on GaN/sapphire, the good rectifying characteristics of Ni Schottky diodes were observed. In addition, deep trap spectra and electron beam-induced current measurements were performed for the first time in this polytype. These experiments show that the uppermost 2 µm layer of the grown films contains a high density of rather deep electron traps near Ec − 0.3 eV and Ec − 0.7 eV, whose presence results in the relatively high series resistance of the structures. The diffusion length of the excess charge carriers was measured for the first time in κ-Ga2O3. The film with the greatest thickness of 86 μm was irradiated with protons and the carrier removal rate was about 10 cm−1, which is considerably lower than that for β-Ga2O3.

Funder

Ministry of Science and Higher Education of Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3