Experiments on Temperature Changes of Microbolometer under Blackbody Radiation and Predictions Using Thermal Modeling by COMSOL Multiphysics Simulator

Author:

Deng Yu-Zhen,Tang Shiang-Feng,Zeng Hong-Yuan,Wu Zheng-Yuan,Tung Der-Kuo

Abstract

In this study, we study a heat transfer model, with the surface of the microbolometer device receiving radiation from blackbody constructed using a COMSOL Multiphysics simulator. We have proposed three kinds of L-type 2-leg and 4-leg with the pixel pitch of 35 μm based on vanadium oxide absorbent membrane sandwiched with top passivated and bottom Si3N4 supporting films, respectively. Under the blackbody radiation, the surface temperature changes and distributions of these samples are simulated and analyzed in detail. The trend of change of the temperature dependent resistance of the four kinds of bolometer devices using the proposed heat transfer model is consistent with the actual results of the change of resistance of 4 samples irradiated with 325 K blackbody located in the front distance of 5 cm. In this paper, ΔT indicates the averaged differences of the top temperature on the suspended membrane and the lowest temperature on the post of legs of the microbolometers. It is shown that ΔT ≈ 17 mK is larger in nominal 2-leg microbolometer device than that of 4-leg one and of 2-leg with 2 μm × 2 μm central square hole and two 7.5 μm × 2 μm slits in suspended films. Additionally, only ΔT ≈ 5 mK with 4-leg microbolometer device under the same radiated energy of 325 K blackbody results from the larger total thermal conductance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference11 articles.

1. Uncooled infrared focal plane arrays;Masafumi;IEEE Trans. Electr. Electron. Eng.,2018

2. Uncooled Infrared Imaging Arrays and Systems;Kruse,1997

3. Performance evaluation for uncooled microbolometer using antireflection coating of SiO2/Si3N4 multiple films on silicon window;Zeng;Sens. Mater.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3