Thermodynamically limited uncooled infrared detector using an ultra-low mass perforated subwavelength absorber

Author:

Das AvijitORCID,Mah Merlin L.,Hunt John,Talghader Joseph J.

Abstract

An uncooled detector has reached the thermodynamic temperature fluctuation limit, such that 98% of its total noise consisted of phonon and photon fluctuations of the detector body. The device has performed with a detectivity of 3.8×109cmHz/W, which is the highest reported for any room temperature device operating in the long-wave infrared (λ∼8−12µm). The device has shown a noise-equivalent temperature difference of 4.5 mK and a time constant of 7.4 ms. The detector contains a subwavelength perforated absorber with an absorption-per-unit-thermal mass-per-area of 1.54×1022kg−1m−2, which is approximately 1.6–32.1 times greater than the state-of-the-art absorbers reported for any infrared application. The perforated absorber membrane is mostly open space, and the solid portion consists of Ti, SiN x , and Ni layers with an overall fill factor of ∼28%, where subwavelength interference, cavity coupling, and evanescent field absorption among units induce the high absorption-per-unit-thermal mass-per-area. Readout of the detector occurs via infrared-absorption-induced deformation using a Mach–Zehnder interferometry technique (at λ=633nm), chosen for its long-term compatibility with array reads using a single integrated transceiver.

Funder

Army Research Office

Minnesota Nano Center

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3