High-Performance P- and N-Type SiGe/Si Strained Super-Lattice FinFET and CMOS Inverter: Comparison of Si and SiGe FinFET

Author:

Yao Yi-Ju1,Yang Ching-Ru2,Tseng Ting-Yu2,Chang Heng-Jia2,Lin Tsai-Jung2,Luo Guang-Li3,Hou Fu-Ju3,Wu Yung-Chun2,Chang-Liao Kuei-Shu2

Affiliation:

1. College of Semiconductor Research, National Tsing Hua University, Hsinchu 30013, Taiwan

2. Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

3. Taiwan Semiconductor Research Institute, Hsinchu 30078, Taiwan

Abstract

This research presents the optimization and proposal of P- and N-type 3-stacked Si0.8Ge0.2/Si strained super-lattice FinFETs (SL FinFET) using Low-Pressure Chemical Vapor Deposition (LPCVD) epitaxy. Three device structures, Si FinFET, Si0.8Ge0.2 FinFET, and Si0.8Ge0.2/Si SL FinFET, were comprehensively compared with HfO2 = 4 nm/TiN = 80 nm. The strained effect was analyzed using Raman spectrum and X-ray diffraction reciprocal space mapping (RSM). The results show that Si0.8Ge0.2/Si SL FinFET exhibited the lowest average subthreshold slope (SSavg) of 88 mV/dec, the highest maximum transconductance (Gm, max) of 375.2 μS/μm, and the highest ON–OFF current ratio (ION/IOFF), approximately 106 at VOV = 0.5 V due to the strained effect. Furthermore, with the super-lattice FinFETs as complementary metal–oxide–semiconductor (CMOS) inverters, a maximum gain of 91 v/v was achieved by varying the supply voltage from 0.6 V to 1.2 V. The simulation of a Si0.8Ge0.2/Si super-lattice FinFET with the state of the art was also investigated. The proposed Si0.8Ge0.2/Si strained SL FinFET is fully compatible with the CMOS technology platform, showing promising flexibility for extending CMOS scaling.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference19 articles.

1. Lee, C.H., Mochizuki, S., Southwick, R.G., Li, J., Miao, X., Bao, R., Ando, T., Galatage, R., Siddiqui, S., and Labelle, C. (2017, January 2–6). Jagannathan. A comparative study of strain and Ge content in Si1−xGex channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs. Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA.

2. Yeap, G., Lin, S.S., Chen, Y.M., Shang, H.L., Wang, P.W., Lin, H.C., Peng, Y.C., Sheu, J.Y., Wang, M., and Chen, X. (2019, January 7–11). 5 nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021 µm2 SRAM cells for Mobile SoC and High Performance Computing Applications. Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA.

3. van Dal, M.J.H., Vellianitis, G., Doornbos, G., Duriez, B., Holland, M.C., Vasen, T., Afzalian, A., Su, S.K., Chen, T.K., and Shen, T.M. (2018, January 1–5). Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs. Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA.

4. Arimura, H., Eneman, G., Capogreco, E., Witters, L., De Keersgieter, A., Favia, P., Porret, C., Hikavyy, A., Loo, R., and Bender, H. (2018, January 1–5). Advantage of NW structure in preservation of SRB-induced strain and investigation of off-state leakage in strained stacked Ge NW pFET. Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA.

5. Huang, Y.-S., Tsai, C.-E., Tu, C.-T., Chen, J.-Y., Ye, H.-Y., Lu, F.-L., and Liu, C.W. (2020, January 12–18). First Demonstration of Uniform 4-Stacked Ge0.9Sn0.1 Nanosheets with Record ION = 73 μA at VOV = VDS = −0.5 V and Low Noise Using Double Ge0.95Sn0.05 Caps, Dry Etch, Low Channel Doping, and High S/D Doping. Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3