Affiliation:
1. GIPSA-Lab, Grenoble INP, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
Abstract
With the increasing visual realism of computer-graphics (CG) images generated by advanced rendering engines, the distinction between CG images and natural images (NIs) has become an important research problem in the image forensics community. Previous research works mainly focused on the conventional supervised learning framework, which usually requires a good quantity of labeled data for training. To our knowledge, we study, for the first time in the literature, the utility of the self-supervised learning mechanism for the forensic classification of CG images and NIs. The idea is to make use of a large number of readily available unlabeled data, along with a self-supervised training procedure on a well-designed pretext task for which labels can be generated in an automatic and convenient way without human manual labeling effort. Differing from existing self-supervised methods, based on pretext tasks targeted at image understanding, or based on contrastive learning, we propose carrying out self-supervised training on a forensics-oriented pretext task of classifying authentic images and their modified versions after applying various manipulations. Experiments and comparisons showed the effectiveness of our method for solving the CG forensics problem under different evaluation scenarios. Our proposed method outperformed existing self-supervised methods in all experiments. It could sometimes achieve comparable, or better, performance. compared with a state-of-the-art fully supervised method under difficult evaluation scenarios with data scarcity and a challenging forensic problem. Our study demonstrates the utility and potential of the self-supervised learning mechanism for image forensics applications.
Funder
French National Research Agency
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference59 articles.
1. Farid, H. (2022, December 27). Digital Image Forensics, 2012. Tutorial and Course Notes. Available online: https://farid.berkeley.edu/downloads/tutorials/digitalimageforensics.pdf.
2. An overview on image forensics;Piva;Isrn Signal Process.,2013
3. Media forensics and deepfakes: An overview;Verdoliva;IEEE J. Sel. Top. Signal Process.,2020
4. Castillo Camacho, I., and Wang, K. (2021). A comprehensive review of deep-learning-based methods for image forensics. J. Imaging, 7.
5. Sencar, H.T., and Memon, N. (2013). Digital Image Forensics, Springer.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献