Detection of AI-Created Images Using Pixel-Wise Feature Extraction and Convolutional Neural Networks

Author:

Martin-Rodriguez Fernando1ORCID,Garcia-Mojon Rocio1ORCID,Fernandez-Barciela Monica1ORCID

Affiliation:

1. AtlanTTic Research Center for Telecommunication Technologies, University of Vigo, 36310 Vigo, Spain

Abstract

Generative AI has gained enormous interest nowadays due to new applications like ChatGPT, DALL E, Stable Diffusion, and Deepfake. In particular, DALL E, Stable Diffusion, and others (Adobe Firefly, ImagineArt, etc.) can create images from a text prompt and are even able to create photorealistic images. Due to this fact, intense research has been performed to create new image forensics applications able to distinguish between real captured images and videos and artificial ones. Detecting forgeries made with Deepfake is one of the most researched issues. This paper is about another kind of forgery detection. The purpose of this research is to detect photorealistic AI-created images versus real photos coming from a physical camera. Id est, making a binary decision over an image, asking whether it is artificially or naturally created. Artificial images do not need to try to represent any real object, person, or place. For this purpose, techniques that perform a pixel-level feature extraction are used. The first one is Photo Response Non-Uniformity (PRNU). PRNU is a special noise due to imperfections on the camera sensor that is used for source camera identification. The underlying idea is that AI images will have a different PRNU pattern. The second one is error level analysis (ELA). This is another type of feature extraction traditionally used for detecting image editing. ELA is being used nowadays by photographers for the manual detection of AI-created images. Both kinds of features are used to train convolutional neural networks to differentiate between AI images and real photographs. Good results are obtained, achieving accuracy rates of over 95%. Both extraction methods are carefully assessed by computing precision/recall and F1-score measurements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., and Polosukhin, I. (2017). Attention is All You Need. arXiv.

2. (2023, October 22). Tensor Flow Official Tutorial, Neural Machine Translation with a Transformer and Keras. Available online: https://www.tensorflow.org/text/tutorials/transformer?hl=en.

3. Shahriar, S., and Hayawi, K. (2023). Let’s have a chat! A Conversation with ChatGPT: Technology, Applications, and Limitations. Artif. Intell. Appl., 1.

4. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv.

5. Marcus, G., David, E., and Aaronson, S. (2022). A very preliminary analysis of DALL-E 2. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementación de herramientas de Inteligencia Artificial en la detección de vídeos falsos y ultrafalsos (deepfakes);VISUAL REVIEW. International Visual Culture Review / Revista Internacional de Cultura Visual;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3