Simple Methods for Improving the Forensic Classification between Computer-Graphics Images and Natural Images

Author:

Bouhamidi Yacine1,Wang Kai1

Affiliation:

1. Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France

Abstract

From the information forensics point of view, it is important to correctly classify between natural images (outputs of digital cameras) and computer-graphics images (outputs of advanced graphics rendering engines), so as to know the source of the images and the authenticity of the scenes described in the images. It is challenging to achieve good classification performance when the forensic classifier is tested on computer-graphics images generated by unknown rendering engines and when we have a limited number of training samples. In this paper, we propose two simple yet effective methods to improve the classification performance under such challenging situations, respectively based on data augmentation and the combination of local and global prediction results. Compared with existing methods, our methods are conceptually simple and computationally efficient, while achieving satisfying classification accuracy. Experimental results on datasets comprising computer-graphics images generated by four popular and advanced graphics rendering engines demonstrate the effectiveness of the proposed methods.

Funder

French National Research Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3