Predictive Maintenance with Sensor Data Analytics on a Raspberry Pi-Based Experimental Platform

Author:

Chuang Shang-Yi,Sahoo Nilima,Lin Hung-Wei,Chang Yeong-Hwa

Abstract

Predictive maintenance techniques can determine the conditions of equipment in order to evaluate when maintenance should be performed. Thus, it minimizes the unexpected device downtime, lowers the maintenance costs, extends equipment lifecycle, etc. Therefore, this article developed a predictive maintenance mechanism with the construction of a test platform and data analysis along with machine learning. The information transmission of sensors was based on Raspberry Pi via the TCP/IP (Transmission Control Protocol/Internet Protocol) communication protocol. The sensors used for environmental sensing were implemented on the programmable interface controller and the data were stored in time sequence. A statistical analysis software platform was adopted for data preprocessing, modelling, and prediction to provide necessary maintenance decision. Using multivariate analysis users can obtain more information about the equipment’s status, and the administrator can also determine the operational situation before unexpected device anomalies. The developed modules are decisively helpful in preventing unpredictable losses, thus improving the quality of services.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. How AI Is Making Predictive Maintenance a Reality for the Industrial IoThttps://www.uptake.com/blog/how-ai-is-making-predictive-maintenance-a-reality-for-the-industrial-iot

2. Mean Square Convergence of Consensus Algorithms in Random WSNs

3. A reconfigurable smart sensor interface for industrial WSN in IoT environment;Chi;IEEE Trans. Ind. Inform.,2014

4. EasyConnect: A Management System for IoT Devices and Its Applications for Interactive Design and Art

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3