Optimizing renewable energy systems through artificial intelligence: Review and future prospects

Author:

Ukoba Kingsley1,Olatunji Kehinde O.1ORCID,Adeoye Eyitayo2,Jen Tien-Chien1,Madyira Daniel M.1

Affiliation:

1. Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa

2. Department of Physics & SLT, First Technical University, Ibadan Nigeria

Abstract

The global transition toward sustainable energy sources has prompted a surge in the integration of renewable energy systems (RES) into existing power grids. To improve the efficiency, reliability, and economic viability of these systems, the synergistic application of artificial intelligence (AI) methods has emerged as a promising avenue. This study presents a comprehensive review of the current state of research at the intersection of renewable energy and AI, highlighting key methodologies, challenges, and achievements. It covers a spectrum of AI utilizations in optimizing different facets of RES, including resource assessment, energy forecasting, system monitoring, control strategies, and grid integration. Machine learning algorithms, neural networks, and optimization techniques are explored for their role in complex data sets, enhancing predictive capabilities, and dynamically adapting RES. Furthermore, the study discusses the challenges faced in the implementation of AI in RES, such as data variability, model interpretability, and real-time adaptability. The potential benefits of overcoming these challenges include increased energy yield, reduced operational costs, and improved grid stability. The review concludes with an exploration of prospects and emerging trends in the field. Anticipated advancements in AI, such as explainable AI, reinforcement learning, and edge computing, are discussed in the context of their potential impact on optimizing RES. Additionally, the paper envisions the integration of AI-driven solutions into smart grids, decentralized energy systems, and the development of autonomous energy management systems. This investigation provides important insights into the current landscape of AI applications in RES.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3