Abstract
Ultra-shallow-buried and large-span double-arch tunnels face complex risks during construction. The risk sources are hidden, complicated, and diverse. The dynamic risk assessment problem cannot be solved satisfactorily by using the static method as an insufficient amount of research has been conducted. The land part of the Xiamen Haicang double-arch tunnel was selected as the background for the dynamic risk assessment of ultra-shallow-buried and large-span double-arch tunnel construction. The construction process was divided into five stages: pre-construction preparation; ground and surrounding rock reinforcement; pilot tunnel excavation; and the single-and the double-tunnel excavations of the main tunnel. Through consultation with tunnel experts, six first-level and thirty second-level risk evaluation indexes were proposed. The benchmark weight of the dynamic risk assessment index was determined by using the analytic hierarchy process. The weight of the risk evaluation index was revised according to the monitoring data and the construction stage. The fuzzy evaluation matrix of the construction risk membership degree was obtained by using the fuzzy comprehensive assessment method, and the calculation results were analyzed using the subsection assignment method. Control measures were suggested according to the risk assessment results. The risk assessment result of the double tunnel excavation stage of the main tunnel was level II, and the risk level was the highest among the five construction stages. The risk assessment result of the ground and surrounding rock reinforcement stage was level IV, and the risk level was the lowest. The dynamic construction safety risk assessment based on the fuzzy comprehensive assessment method is more timely, accurate, and reasonable than the traditional assessment method. The method can be adopted in similar engineering projects.
Funder
Shanghai Municipal Science and Technology Project
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献