Construction practice of water conveyance tunnel among complex geotechnical conditions: a case study

Author:

Duan Kaimin,Zhang Guofeng,Sun Hui

Abstract

AbstractThe construction practice of water conveyance tunnels often encounters various complex geotechnical engineering conditions, which bring huge challenges to the design and construction of water conveyance tunnels. Based on the theory of rock elastic–plastic mechanics and finite element analysis technology, this article carried out investigations of engineering geological features, geological formations and hydrological conditions establishes a calculation model for the 3# water conveyance tunnel of the Fenhe River Diversion Project, and analyzes the variation law of surrounding rock stress and displacement during TBM excavation of the tunnel. The results indicate that the dominant direction of the rock mass principal stress measured by the hydraulic fracturing method is NE84°, and the maximum horizontal principal stress, minimum horizontal principal stress, and vertical stress decrease sequentially, analyzing the characteristics of shield TBM construction technology, it is applied to the construction of water transfer tunnels. The numerical simulation of TBM construction using FLAC3D software shows that as the excavation surface advances, the subsidence value of the tunnel roof first slowly increases, then rapidly increases, and then tends to stabilize. The horizontal displacement of the surrounding rock is increasing. The maximum principal stress of the surrounding rock gradually increases. The final surrounding rock stress is 35 MPa. The TBM shield machine with mud water balance driven by indirectly controlled frequency conversion motor is selected for TBM construction of the tunnel. The study offers statistical information to support tunneling technology for water conveyance in the geotechnical engineering practice.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3