Abstract
Sufficient gas accumulation is an essential factor that controls the effective development of tight sandstone gas reservoirs that are generally characterized by low porosity and permeability. Seismic methods are important for predicting potential gas areas in tight sandstones. However, the complex relationships between rock physical properties and gas saturation make gas enrichment estimation with seismic methods challenging. Nonetheless, seismic velocity dispersion using a wave-induced fluid flow mechanism can enable gas identification by utilizing the associated dispersion attributes. This paper proposes a method for improved gas identification using a new fluid dispersion attribute obtained by incorporating the decoupled fluid-solid seismic amplitude variation with offset representation into the frequency-dependent inversion scheme. Numerical analyses and synthetic data tests confirmed the enhanced sensitivity of the fluid dispersion attribute to gas saturation compared to the conventionally used compressional wave velocity dispersion attribute. Field data applications further validated the ability of the proposed fluid dispersion attribute to improve gas prediction in tight sandstone reservoirs. The results of the measurements enable rational interpretation of the geological significance of assessments of reservoir properties from gas-producing wellbores. The proposed fluid dispersion attribute is a reliable indicator for gas prediction and represents a useful tool for characterizing tight sandstone reservoirs.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献